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Sources of Gas in a Vacuum System Iq:"b

l

Desorption

Permeation Virtual Leaks /
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Desorption (outgassing) I,Ls‘[s

Desorption is the evolution of
adsorbed gas from the internal
surfaces of a vacuum vessel.

Desorption is a function of :

- Gas molecule characteristics
- Surface material

- Surface treatment

- Surface temperature

- Exposure time at vacuum

High temperature bakeout under

vacuum is required to desorb
asses in the shortest possible
ime.
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Use Published Desorption Data for I
comparative purposes only I

Desorption Rate
(mBar-1/sec- cm? x 10-10)
Metals and Glasses 1 hr @ vacuum 4 hrs @ vacuum

Aluminum 80 7
Copper (mech. polished) 47 7
OFHC Copper (raw) 266 20
OFHC Copper (mech. polished) 27 3
Mild Steel, slightly rusty 58,520 199
Mild Steel, Cr plate (polished) 133 13
Mild Steel, Ni plate (polished) 40 4
Mild Steel, Al spray coating 798 133
Molybdenum 67 5
Stainless Steel (unpolished) 266 20
Stainless Steel (electropolished) 66 5
Molybdenum glass 93 5
Pyrex (Corning 7740) raw 99 8
Pyrex (Corning 7740) 1 mo. At Atm. 16 3

Ref. "Modern Vacuum Practice”, Nigel Harris, pg 240
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Photon Stimulated Desorption !h[b

—— Synchrotron Radiation
— Photoelectrons and/or Backscattered Photons
Desorbed Gas
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Photon Stimulated Desorption

_ (P )(1)(6.242x10" KeV/Joule)
£

N

(94

where N, = photon dose (photons/sec)
Psx = Synchrotron Radiation Power (Watts/cm)
| = element length (cm)
€ = average photon energy = 0.308(2.218 E3/r) (keV/photon)
E = beam energy (GeV)
r = magnetic bend radius (m)

SR Power (Watts/cm)

Z (meters)
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Photo-desorption rates vary with dose

“Eta-Leveling”
n
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Accumulated photons (m-1)

Desorption ylelds from copper chamber
(C10100) with glow discharge cleaning
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Photon Stimulated Desorption Iub[b

22.4 liters x 760 Torr
o |

6.02 x 10*® molecules

where @ =Photon Stimulated Desorption (Torr - liters/sed
N, = Photon Dose (photons/sc)

11, = Photo - desorption Rate (molecules/photon)
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I
Evaporation )]

Q- = 3.639\/;(."5 -P)A

where Qg = gasload due to evaporation (Torr-liters/sec)
T = temperature (K)
M = molecular weight (grams/mole)
Pe = vapor pressure of material (Torr)
P = pressure (Torr)
A = surface area of material evaporating (cm?)
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Leakage

True Leaks are steady-state gas loads, which
limit the ultimate pressure of a vacuum system.

There are two categories of leaks in a vacuum system:
1. External Leaks or True Leaks (Q,)
Q; > 10-° Torr-liter/sec  laminar flow leak

Q; < 108 Torr-liter/sec  molecular flow leak

Ref. "Vacuum Technology and Space Simulation”,
Santeler et al, NASA SP-105, 1966
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Leakage (continued)

2. Internal Leaks or Virtual Leaks (Q,)

PV
Q= et

where Q, = gasload due to virtual leak (Torr-
liters/sec)
P, = pressure of trapped gas (Torr)

V = volume of trapped gas (liters)
e = 2.7183 base to natural logarithm

t = time (sec)

Ref. "Vacuum Technology and Space Simulation”, Santeler et al,

NASA SP-105, 1966
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Permeation is the transfer of a fluid |"%]
through a solid q!‘ .

-Material combination (fluid & solid)

-Temperature

-Permeation thickness

-Area \

Vacuum

-Pressure differential
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O-rings !b"ls

- Fluorocarbon Rubber (Viton , Kalrez)
Working temperature range -40 to 200°C
Hardness: Shore A-78

- Nitrile (Buna N)
Working temperature range -55 to 135°C
Hardness: Shore A-70

- Silicone Rubber (Silastic, Silplus)
Working temperature range -114 to 232°C
Hardness: Shore A-72
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O-ring Permeation Leak Rate Approximation Igb[b

Q, = 0.7FD(AP) K(1 - S)°

where Q = leak rate (std cc/sec)

F = permeability rate for a specific gas through a
specific elastomer at a specific temperature
(std cc-cm/cm? sec bar)

D = o-ring dia. (in)

DP = pressure differential across o-ring (psi)

K = factor depending on % squeeze and lubrication
(see next slide)

S = % squeeze

Ref. Parker O-ring Handbook
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Effect of Squeeze and Lubrication on O-
ring Permeability Leak Rate

Ref. Parker O-ring Handbook
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Example Calculation of O-ring Permeability I\h[b

What is the approximate H, permeability rate of a 10"
diameter Viton o-ring (no lubrication, with a 20% squeeze)
at a Ap = 14.7 psi?

F = 160 x 10-8 std cc-cm from Parker Table A2-4
D = 10” diameter

Dp = 14.7 psi
K = 1.35 from Parker Figure A2-2
S =0.20

Q = 0.70FD(AP) K(1 - S)
std cc - cm

cm? — sec— bar

td cc\ /iters \ 760 Torr
-(1.42 x10* 2
Q ( X sec )(1000 cc j( Std Atm )
10°* Torr - liters
sec

Q- 0.70[160 x 107 )(10")(14.7 psi)(1.35)(1 — 0.20)

Q =1.08 x
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- The leak rate through an o-ring is dependent
on the following:

1. % squeeze
2. Lubricated or dry

- Increased o-ring squeeze decreases
permeability by ‘increasing the path length the ~(i—
gas has to travel.

- Increased o-ring squeeze also decreases the
exposed area available for gas entry.

- Increased o-ring squeeze also forces the
elastomer into the microscopic irregularities in
the sealing surface.
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Face-type o-ring seals are recommended.

Use as heavy a squeeze as possible on the o-ring
cross-section.

When a heavy squeeze is not possible, then (and only
then) consider lubrication.

A heavy squeeze requires heavy flange construction .

Two o-rings in series can drastically reduce permeation.
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Helium Permeation Rate vs. % Squeeze m’[b
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Ref. Parker O-ring Handbook
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Multiple O-ring Seals




w

The compression force (per linear inch of o-ring) is
dependent on:

1. Hardness of the o-ring
2. O-ring cross-section
3. % squeeze

Variations in material properties will
cause the compression forces to vary
though the three attributes are the

same.
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Typical O-Ring Groove Dimensions

i

face seal glands

FOR iNTEAMNAL PREFSUAE
loutward pressarg dirgcTignt
dimension tha groove by 5
dutside diameter [Hg) snd width:

Hp = &aan DD, gl O-ring
is8 Tabla A5-1)

Tolarance = Minus 1% of kMogn
0.0., but not mare than

FOR EATEAMAL PAESSUAE
tinward pressura directian]
dimension the groove by trs
fnride diameter {H;F and widih:

H; = Maan |.0, of D-ring
(see Takrlg AS-T)

Tolerance o5 1% of Mean
[N st rmorm than
+. OED.

BREAK CORNFE=H
APPRIDX. 1305 RAL

|- A

-
o ros | .
iTvF 1 %
e m |}

o I B L BRIDOME
BLAFAZE FINISHx [ LEFTH
32 FOF LICIDS PRIV
16 FOF VAL |z —

AMO BASES

GLAND DETAIL

—L [T OLAKD OF2THY

(Fafer o oes. g chart AL .3 br.ow)

DESIGN CHART A5-2
FOR O-RING FACE SEAL GLANDS

SELTION W

These dimersions are intended primarily for face type seals and low temparalure applications.

Ref. Parker O-ring Handbook
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